11.3 Videos Guide

11.3a

- The Integral Test:
 - Suppose f is a continuous, positive, decreasing function on $[1,\infty)$ and let $a_n=f(n)$. Then the series $\sum_{n=1}^{\infty}a_n$ is convergent $\iff \int_1^{\infty}f(x)\ dx$ is convergent.
- Convergence of a *p*-series
 - $\circ \quad \textstyle \sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges if } p > 1 \text{ and diverges if } p \leq 1$

11.3b

Exercise:

• Determine whether the series is convergent or divergent.

$$1 - 5 + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \cdots$$

11.3c

Estimating sums:

- The remainder of a partial sum and estimating sums: Suppose $f(k) = a_k$, where f is a continuous, positive, decreasing function for $x \ge n$ and $\sum a_n$ is convergent with sum s. Then if S_n is a partial sum,
 - \circ $R_n = s s_n = a_{n+1} + a_{n+2} + \cdots$ is the remainder in approximating s
 - $\circ \int_{n+1}^{\infty} f(x) \ dx \le R_n \le \int_n^{\infty} f(x) \ dx$
 - $\circ \quad s_n + \int_{n+1}^{\infty} f(x) \, dx \le s \le s_n + \int_n^{\infty} f(x) \, dx$

11.3d

Exercise:

- a) Find the partial sum s_{10} of the series $\sum_{n=1}^{\infty} 1/n^4$. Estimate the error in using s_{10} as an approximation to the sum of the series.
- b) Use $s_n + \int_{n+1}^{\infty} f(x) dx \le s \le s_n + \int_{n}^{\infty} f(x) dx$ with n = 10 to give an improved estimate of the sum.
- c) Compare your estimate in part (b) with the exact value $\zeta(4) = \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$. (This is known as the Riemann zeta function and is used in physics and higher-level math.)
- d) Find a value of n that will ensure that the error in the approximation $s \approx s_n$ is less than 0.001.

11.3e

Proof:

The Integral Test